Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727301

ABSTRACT

Liver fibrosis, characterized by excessive extracellular matrix (ECM) deposition, can progress to cirrhosis and increases the risk of liver cancer. Hepatic stellate cells (HSCs) play a pivotal role in fibrosis progression, transitioning from a quiescent to activated state upon liver injury, wherein they proliferate, migrate, and produce ECM. Calcium signaling, involving the inositol 1,4,5-trisphosphate receptor (IP3R), regulates HSC activation. This study investigated the efficacy of a novel IP3R inhibitor, desmethylxestospongin B (dmXeB), in preventing HSC activation. Freshly isolated rat HSCs were activated in vitro in the presence of varying dmXeB concentrations. The dmXeB effectively inhibited HSC proliferation, migration, and expression of fibrosis markers without toxicity to the primary rat hepatocytes or human liver organoids. Furthermore, dmXeB preserved the quiescent phenotype of HSCs marked by retained vitamin A storage. Mechanistically, dmXeB suppressed mitochondrial respiration in activated HSCs while enhancing glycolytic activity. Notably, methyl pyruvate, dimethyl α-ketoglutarate, and nucleoside supplementation all individually restored HSC proliferation despite dmXeB treatment. Overall, dmXeB demonstrates promising anti-fibrotic effects by inhibiting HSC activation via IP3R antagonism without adverse effects on other liver cells. These findings highlight dmXeB as a potential therapeutic agent for liver fibrosis treatment, offering a targeted approach to mitigate liver fibrosis progression and its associated complications.


Subject(s)
Cell Proliferation , Hepatic Stellate Cells , Inositol 1,4,5-Trisphosphate Receptors , Liver Cirrhosis , Animals , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Rats , Humans , Cell Proliferation/drug effects , Male , Rats, Sprague-Dawley , Cell Movement/drug effects
5.
Nat Commun ; 15(1): 1470, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368394

ABSTRACT

Disrupted host-microbe interactions at the mucosal level are key to the pathophysiology of IBD. This study aimed to comprehensively examine crosstalk between mucosal gene expression and microbiota in patients with IBD. To study tissue-specific interactions, we perform transcriptomic (RNA-seq) and microbial (16S-rRNA-seq) profiling of 697 intestinal biopsies (645 derived from 335 patients with IBD and 52 from 16 non-IBD controls). Mucosal gene expression patterns in IBD are mainly determined by tissue location and inflammation, whereas the mucosal microbiota composition shows a high degree of individual specificity. Analysis of transcript-bacteria interactions identifies six distinct groups of inflammation-related pathways that are associated with intestinal microbiota (adjusted P < 0.05). An increased abundance of Bifidobacterium is associated with higher expression of genes involved in fatty acid metabolism, while Bacteroides correlates with increased metallothionein signaling. In patients with fibrostenosis, a transcriptional network dominated by immunoregulatory genes is associated with Lachnoclostridium bacteria in non-stenotic tissue (adjusted P < 0.05), while being absent in CD without fibrostenosis. In patients using TNF-α-antagonists, a transcriptional network dominated by fatty acid metabolism genes is linked to Ruminococcaceae (adjusted P < 0.05). Mucosal microbiota composition correlates with enrichment of intestinal epithelial cells, macrophages, and NK-cells. Overall, these data demonstrate the presence of context-specific mucosal host-microbe interactions in IBD, revealing significantly altered inflammation-associated gene-taxa modules, particularly in patients with fibrostenotic CD and patients using TNF-α-antagonists. This study provides compelling insights into host-microbe interactions that may guide microbiota-directed precision medicine and fuels the rationale for microbiota-targeted therapeutics as a strategy to alter disease course in IBD.


Subject(s)
Host Microbial Interactions , Inflammatory Bowel Diseases , Humans , Host Microbial Interactions/genetics , Tumor Necrosis Factor-alpha/genetics , Inflammatory Bowel Diseases/pathology , Phenotype , Inflammation/genetics , Inflammation/pathology , Fatty Acids , Intestinal Mucosa/pathology
6.
Trends Microbiol ; 32(2): 178-189, 2024 02.
Article in English | MEDLINE | ID: mdl-37596118

ABSTRACT

Human gut bacteria produce metabolites that support energy and carbon metabolism of colonic epithelial cells. While butyrate is commonly considered the primary fuel, it alone cannot meet all the carbon requirements for cellular synthetic functions. Glucose, delivered via circulation or microbial metabolism, serves as a universal carbon source for synthetic processes like DNA, RNA, protein, and lipid production. Detailed knowledge of epithelial carbon and energy metabolism is particularly relevant for epithelial regeneration in digestive and metabolic diseases, such as inflammatory bowel disease and type 2 diabetes. Here, we review the production and role of different colonic microbial metabolites in energy and carbon metabolism of colonocytes, also critically evaluating the common perception that butyrate is the preferred fuel.


Subject(s)
Butyrates , Diabetes Mellitus, Type 2 , Humans , Butyrates/metabolism , Diabetes Mellitus, Type 2/metabolism , Colon/metabolism , Carbon/metabolism , Homeostasis
7.
J Crohns Colitis ; 18(3): 462-478, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37878770

ABSTRACT

Intestinal fibrosis is a common complication in patients with inflammatory bowel disease [IBD], in particular Crohn's disease [CD]. Unfortunately, at present intestinal fibrosis is not yet preventable, and cannot be treated by interventions other than surgical removal. Intestinal fibrosis is characterized by excessive accumulation of extracellular matrix [ECM], which is caused by activated fibroblasts and smooth muscle cells. Accumulation of ECM results from an imbalanced production and degradation of ECM. ECM degradation is mainly performed by matrix metalloproteinases [MMPs], enzymes that are counteracted by tissue inhibitors of MMPs [TIMPs]. In IBD patients, MMP activity [together with other protease activities] is increased. At the same time, CD patients have a generally lower MMP activity compared to ulcerative colitis patients, who usually do not develop intestinal strictures or fibrosis. The exact regulation and role[s] of these MMPs in fibrosis are far from understood. Here, we review the current literature about ECM remodelling by MMPs in intestinal fibrosis and their potential role as biomarkers for disease progression or druggable targets.


Subject(s)
Crohn Disease , Inflammatory Bowel Diseases , Humans , Intestines , Crohn Disease/metabolism , Fibrosis , Matrix Metalloproteinases/metabolism
8.
Biomedicines ; 11(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38137328

ABSTRACT

Oxidative stress is a key pathophysiological process associated with the development and progression of inflammatory bowel disease (IBD). Biomarkers for oxidative stress, however, are scarce, as are diagnostic tools that can interrogate an individual's gut redox status. This proof-of-concept study aimed to evaluate the potential utility of an oxidation-reduction potential (ORP) measurement probe, to quantify redox status in the feces of both patients with IBD and healthy controls. Previous studies using this ORP measurement probe demonstrated promising data when comparing ORP from severely malnourished individuals with that of healthy controls. To date, ORP analyses have not been performed in the context of IBD. We hypothesized that measuring the ORP of fecal water in patients with IBD might have diagnostic value. The current study, however, did not show significant differences in ORP measurement values between patients with IBD (median [IQR] 46.5 [33.0-61.2] mV) and healthy controls (25 [8.0-52.0] mV; p = 0.221). Additionally, ORP measurements were highly unstable and rapidly fluctuated throughout time, with ORP values varying from +24 to +303 mV. Due to potential biological processes and limitations of the measuring equipment, this study was unable to reliably measure ORP. As a result, our findings indicate that ORP quantification may not be a suitable method for assessing fecal redox status and, therefore, does not currently support further exploration as a diagnostic or monitoring tool.

9.
Front Immunol ; 14: 1239142, 2023.
Article in English | MEDLINE | ID: mdl-37781354

ABSTRACT

The intestinal mucosa is constantly exposed to commensal microbes, opportunistic pathogens, toxins, luminal components and other environmental stimuli. The intestinal mucosa consists of multiple differentiated cellular and extracellular components that form a critical barrier, but is also equipped for efficient absorption of nutrients. Combination of genetic susceptibility and environmental factors are known as critical components involved in the pathogenesis of intestinal diseases. The innate immune system plays a critical role in the recognition and elimination of potential threats by detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This host defense is facilitated by pattern recognition receptors (PRRs), in which the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has gained attention due to its role in sensing host and foreign double-stranded DNA (dsDNA) as well as cyclic dinucleotides (CDNs) produced by bacteria. Upon binding with dsDNA, cGAS converts ATP and GTP to cyclic GMP-AMP (cGAMP), which binds to STING and activates TANK binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), inducing type I interferon (IFN) and nuclear factor kappa B (NF-κB)-mediated pro-inflammatory cytokines, which have diverse effects on innate and adaptive immune cells and intestinal epithelial cells (IECs). However, opposite perspectives exist regarding the role of the cGAS-STING pathway in different intestinal diseases. Activation of cGAS-STING signaling is associated with worse clinical outcomes in inflammation-associated diseases, while it also plays a critical role in protection against tumorigenesis and certain infections. Therefore, understanding the context-dependent mechanisms of the cGAS-STING pathway in the physiopathology of the intestinal mucosa is crucial for developing therapeutic strategies targeting the cGAS-STING pathway. This review aims to provide insight into recent findings of the protective and detrimental roles of the cGAS-STING pathway in intestinal diseases.


Subject(s)
Membrane Proteins , Signal Transduction , Membrane Proteins/metabolism , Signal Transduction/physiology , Nucleotidyltransferases/metabolism , DNA , Homeostasis
10.
Stem Cell Res Ther ; 14(1): 288, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798809

ABSTRACT

BACKGROUND AND AIM: Liver fibrosis is prevalent among chronic diseases of the liver and represents a major health burden worldwide. Growth differentiation factor 7 (GDF7), a member of the TGFß protein superfamily, has been recently investigated for its role in repair of injured organs, but its role in chronic liver diseases remains unclear. Here, we examined hepatic GDF7 expression and its association with development and progression of human liver fibrosis. Moreover, we determined the source and target cells of GDF7 in the human liver. METHODS: GDF7 expression was analyzed in fibrotic and healthy human liver tissues by immunohistochemistry and qPCR. Cell-specific accumulation of GDF7 was examined by immunofluorescence through co-staining of cell type-specific markers on formalin-fixed paraffin-embedded human liver tissues. Public single cell RNA sequence databases were analyzed for cell type-specific expression of GDF7. In vitro, human liver organoids and LX-2 hepatic stellate cells (LX-2) were treated with recombinant human GDF7. Human liver organoids were co-cultured with activated LX-2 cells to induce an autocrine signaling circuit of GDF7 in liver organoids. RESULTS: GDF7 protein levels were elevated in fibrotic liver tissue, mainly detected in hepatocytes and cholangiocytes. In line, GDF7 mRNA was mainly detected in liver parenchymal cells. Expressions of BMPR1A and BMPR2, encoding GDF7 receptors, were readily detected in hepatocytes, cholangiocytes and stellate cells in vivo and in vitro. In vitro, recombinant GDF7 promoted liver organoid growth and enhanced expression of the progenitor cell markers (LGR5, AXIN2), but failed to activate LX-2 cells. Still, activated LX-2 cells induced GDF7 and LGR5 expression in co-cultured human liver organoids. CONCLUSIONS: Collectively, this study reveals a role of GDF7 in liver fibrosis and suggests a potential pro-regenerative function that can be utilized for amelioration of hepatic fibrosis caused by chronic liver disease.


Subject(s)
Autocrine Communication , Liver Diseases , Humans , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/pathology , Liver Diseases/pathology , Stem Cells/metabolism , Transforming Growth Factor beta1/metabolism
11.
Proc Natl Acad Sci U S A ; 120(35): e2208117120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603756

ABSTRACT

The metabolic adaptation of eukaryotic cells to hypoxia involves increasing dependence upon glycolytic adenosine triphosphate (ATP) production, an event with consequences for cellular bioenergetics and cell fate. This response is regulated at the transcriptional level by the hypoxia-inducible factor-1(HIF-1)-dependent transcriptional upregulation of glycolytic enzymes (GEs) and glucose transporters. However, this transcriptional upregulation alone is unlikely to account fully for the levels of glycolytic ATP produced during hypoxia. Here, we investigated additional mechanisms regulating glycolysis in hypoxia. We observed that intestinal epithelial cells treated with inhibitors of transcription or translation and human platelets (which lack nuclei and the capacity for canonical transcriptional activity) maintained the capacity for hypoxia-induced glycolysis, a finding which suggests the involvement of a nontranscriptional component to the hypoxia-induced metabolic switch to a highly glycolytic phenotype. In our investigations into potential nontranscriptional mechanisms for glycolytic induction, we identified a hypoxia-sensitive formation of complexes comprising GEs and glucose transporters in intestinal epithelial cells. Surprisingly, the formation of such glycolytic complexes occurs independent of HIF-1-driven transcription. Finally, we provide evidence for the presence of HIF-1α in cytosolic fractions of hypoxic cells which physically interacts with the glucose transporter GLUT1 and the GEs in a hypoxia-sensitive manner. In conclusion, we provide insights into the nontranscriptional regulation of hypoxia-induced glycolysis in intestinal epithelial cells.


Subject(s)
Epithelial Cells , Glycolysis , Humans , Glycolysis/genetics , Adenosine Triphosphate , Gene Expression , Glucose
12.
FASEB J ; 37(9): e23124, 2023 09.
Article in English | MEDLINE | ID: mdl-37552464

ABSTRACT

Liver fibrosis results from excessive proliferation of, and collagen production by hepatic stellate cells (HSCs) that is caused by chronic liver injury. No drugs are available to cure liver fibrosis. Hydroxyurea is an anti-proliferative drug that is used in benign and malignant disorders. Here, we studied the effect of hydroxyurea on primary HSCs and its anti-fibrotic effect in the CCl4 mouse model of liver fibrosis. Primary rat HSCs were cultured in the absence or presence of hydroxyurea (0.1-1.0 mmol/L). CCl4 or vehicle was administered to C57BL/6/J mice for 4 weeks, with or without hydroxyurea (100 mg/kg/day) co-treatment. We used real-time cell proliferation analysis, Oil Red O (lipid droplet) staining, immunohistochemistry, Acridine Orange staining (apoptosis), Sytox green staining (necrosis), RT-qPCR, ELISA, and Western Blotting for analysis. Hydroxyurea dose-dependently suppressed lipid droplet-loss and mRNA levels of Col1α1 and Acta2 in transdifferentiating HSCs. In fully-activated HSCs, hydroxyurea dose-dependently attenuated PCNA protein levels and BrdU incorporation, but did not reverse Col1α1 and Acta2 mRNA expression. Hydroxyurea did not induce apoptosis or necrosis in HSCs or hepatocytes. Hydroxyurea suppressed accumulation of desmin-positive HSCs and hepatic collagen deposition after CCl4 treatment. CCl4 -induced regenerative hepatocyte proliferation, Col1α1 and Acta2 mRNA expression and α-SMA protein levels were not affected. This study demonstrates that hydroxyurea inhibits HSC proliferation in vitro and attenuates early development of liver fibrosis in vivo, while preserving hepatocyte regeneration after toxic insults by CCl4. Thus, hydroxyurea may have therapeutic value against liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Hydroxyurea , Mice , Rats , Animals , Hydroxyurea/adverse effects , Hepatic Stellate Cells/metabolism , Mice, Inbred C57BL , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Necrosis/pathology , Collagen/metabolism , Cell Proliferation , RNA, Messenger/genetics , Carbon Tetrachloride/toxicity
13.
Front Nutr ; 10: 964337, 2023.
Article in English | MEDLINE | ID: mdl-37305089

ABSTRACT

Introduction: Hepatic lipid accumulation and mitochondrial dysfunction are hallmarks of metabolic associated fatty liver disease (MAFLD), yet molecular parameters underlying MAFLD progression are not well understood. Differential methylation within the mitochondrial DNA (mtDNA) has been suggested to be associated with dysfunctional mitochondria, also during progression to Metabolic Steatohepatitis (MeSH). This study further investigates whether mtDNA methylation is associated with hepatic lipid accumulation and MAFLD. Methods: HepG2 cells were constructed to stably express mitochondria-targeted viral and prokaryotic cytosine DNA methyltransferases (mtM.CviPI or mtM.SssI for GpC or CpG methylation, respectively). A catalytically inactive variant (mtM.CviPI-Mut) was constructed as a control. Mouse and human patients' samples were also investigated. mtDNA methylation was assessed by pyro- or nanopore sequencing. Results and discussion: Differentially induced mtDNA hypermethylation impaired mitochondrial gene expression and metabolic activity in HepG2-mtM.CviPI and HepG2-mtM.SssI cells and was associated with increased lipid accumulation, when compared to the controls. To test whether lipid accumulation causes mtDNA methylation, HepG2 cells were subjected to 1 or 2 weeks of fatty acid treatment, but no clear differences in mtDNA methylation were detected. In contrast, hepatic Nd6 mitochondrial gene body cytosine methylation and Nd6 gene expression were increased in mice fed a high-fat high cholesterol diet (HFC for 6 or 20 weeks), when compared to controls, while mtDNA content was unchanged. For patients with simple steatosis, a higher ND6 methylation was confirmed using Methylation Specific PCR, but no additional distinctive cytosines could be identified using pyrosequencing. This study warrants further investigation into a role for mtDNA methylation in promoting mitochondrial dysfunction and impaired lipid metabolism in MAFLD.

14.
Immunity ; 56(6): 1393-1409.e6, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37164015

ABSTRACT

Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.


Subject(s)
Bacteriophages , Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Antibodies , Epitopes
16.
Clin Transl Gastroenterol ; 14(7): e00579, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36881831

ABSTRACT

Inflammatory bowel diseases (IBDs), encompassing Crohn's disease and ulcerative colitis, are complex and heterogeneous diseases characterized by a multifactorial etiology, therefore demanding a multimodal approach to disentangle the main pathophysiological components driving disease onset and progression. Adoption of a systems biology approach is increasingly advocated with the advent of multiomics profiling technologies, aiming to improve disease classification, to identify disease biomarkers, and to accelerate drug discovery for patients with IBD. However, clinical translation of multiomics-derived biomarker signatures is lagging behind because there are several obstacles that need to be addressed to realize clinically useful signatures. Multiomics integration and IBD-specific identification of molecular networks, standardization and clearly defined outcomes, strategies to tackle cohort heterogeneity, and external validation of multiomics-based signatures are critical aspects. While striving for personalized medicine in IBD, careful consideration of these aspects is, however, needed to adequately match biomarker targets (e.g., the gut microbiome, immunity, or oxidative stress) with their corresponding utilities (e.g., early disease detection and endoscopic and clinical outcome). Theory-driven disease classifications and predictions are still governing clinical practice, while this could be improved by adopting an unbiased, data-driven approach relying on molecular data structures integrated with patient and disease characteristics. In the foreseeable future, the main challenge will lie in the complexity and impracticality of implementing multiomics-based signatures into clinical practice. Still, this could be achieved by developing easy-to-use, robust, and cost-effective tools incorporating omics-derived predictive signatures and through the design and execution of prospective, longitudinal, biomarker-stratified clinical trials.


Subject(s)
Crohn Disease , Inflammatory Bowel Diseases , Humans , Multiomics , Prospective Studies , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/drug therapy , Crohn Disease/diagnosis , Crohn Disease/drug therapy , Crohn Disease/genetics , Biomarkers
17.
Hepatol Commun ; 7(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-36972388

ABSTRACT

In the past decade, liver organoids have evolved rapidly as valuable research tools, providing novel insights into almost all types of liver diseases, including monogenic liver diseases, alcohol-associated liver disease, metabolic-associated fatty liver disease, various types of (viral) hepatitis, and liver cancers. Liver organoids in part mimic the microphysiology of the human liver and fill a gap in high-fidelity liver disease models to a certain extent. They hold great promise to elucidate the pathogenic mechanism of a diversity of liver diseases and play a crucial role in drug development. Moreover, it is challenging but opportunistic to apply liver organoids for tailored therapies of various liver diseases. The establishment, applications, and challenges of different types of liver organoids, for example, derived from embryonic, adult, or induced pluripotent stem cells, to model different liver diseases, are presented in this review.


Subject(s)
Induced Pluripotent Stem Cells , Liver Neoplasms , Adult , Humans , Induced Pluripotent Stem Cells/pathology , Liver Neoplasms/pathology , Drug Development , Organoids/physiology
18.
Front Microbiol ; 14: 1298304, 2023.
Article in English | MEDLINE | ID: mdl-38163085

ABSTRACT

Introduction: Intestinal epithelial cells produce interleukin-18 (IL-18), a key factor in promoting epithelial barrier integrity. Here, we analyzed the potential role of gut bacteria and the hypoxia-inducible factor 1α (HIF1α) pathway in regulating mucosal IL18 expression in inflammatory bowel disease (IBD). Methods: Mucosal samples from patients with IBD (n = 760) were analyzed for bacterial composition, IL18 levels and HIF1α pathway activation. Wild-type Caco-2 and CRISPR/Cas9-engineered Caco-2-HIF1A-null cells were cocultured with Faecalibacterium prausnitzii in a "Human oxygen-Bacteria anaerobic" in vitro system and analyzed by RNA sequencing. Results: Mucosal IL18 mRNA levels correlated positively with the abundance of mucosal-associated butyrate-producing bacteria, in particular F. prausnitzii, and with HIF1α pathway activation in patients with IBD. HIF1α-mediated expression of IL18, either by a pharmacological agonist (dimethyloxallyl glycine) or F. prausnitzii, was abrogated in Caco-2-HIF1A-null cells. Conclusion: Butyrate-producing gut bacteria like F. prausnitzii regulate mucosal IL18 expression in a HIF1α-dependent manner that may aid in mucosal healing in IBD.

19.
Front Immunol ; 13: 1028953, 2022.
Article in English | MEDLINE | ID: mdl-36466902

ABSTRACT

Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.


Subject(s)
Inflammasomes , Inflammatory Bowel Diseases , Humans , Mitochondria , Cholesterol , Chronic Disease , Glycolysis , Pyruvic Acid
20.
Transplant Direct ; 8(10): e1378, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36176723

ABSTRACT

Intestinal transplantation depends on donation after brain death (DBD). Luminal preservation (LP) has been beneficial against preservation injury in previous studies in animal models, but none include DBD. This study aims to investigate whether these benefits occur also with DBD. Methods: Wistar rats (male, N = 9) underwent brain death for 2 h. Thereafter, vascular perfusion was done with University of Wisconsin solution (UW). The small intestine was then explanted and randomized into 3 groups: control (empty segment), LP+PEG (with polyethylene glycol 3350 solution), or LP+UW (with UW), treated and tied shut. Ice-cold UW was used for cold storage. Samples were taken at procurement and after 4 (t = 4) and 8 h (t = 8) of preservation. Histopathological scorings were performed for intestinal preservation injury, subepithelial space, absence of epithelial lining, and hemeoxygenase-1 expression. Results: There was low-level mucosal injury (median intestinal preservation injury score 2) at procurement. At t = 4, bowels treated without LP had more damage than LP-treated samples (control score 4, LP+PEG 2 and LP+UW 2, P < 0.001 control versus LP+UW). At t = 8, no benefit of LP was observed (control 2, LP+PEG 3, LP+UW 2). Subepithelial space increased with time and the presence of LP; epithelial lining was better conserved in LP-treated samples. Hemeoxygenase-1 staining showed increased intensity with increased damage, irrespective of treatment. Conclusions: Luminal perfusion of the small intestine with UW or PEG protects the mucosa in brain-dead rats for up to 4 h. Fewer benefits of LP were found than previously described in non-DBD models. To mimic the clinical situation, DBD should be included in future animal studies on intestinal preservation.

SELECTION OF CITATIONS
SEARCH DETAIL
...